Coefficient of Restitution MS (From OCR 4729)

Q1, (Jan 2007, Q2)

$\mathrm{e}=1=(y-x) / 4$	B 1		or $1 / 2 \times 0.2 x^{2}+1 / 2 \mathrm{x} 0.1 y^{2}=$	
$0.8=0.2 x+0.1 y$	B 1		$1 / 2 \times 0.2 \times 4^{2}(\mathrm{~B} 1 / \mathrm{B} 1$ for any 2$)$	
solving sim. equ.	M1		not if poor quad. soln.	
$x=4 / 3$ only	A1	4		$\mathbf{4}$

Q2, ($\operatorname{Jan} 2007$, Q3)

(i)	$x^{2}=21^{2}+2 \times 40 \times 9.8$	M 1			
	$x=35$	A 1			
	$0=y^{2}-2 \times 40 \times 9.8$	M 1			
	$y=28$	A 1		may be implied	
	$\mathrm{e}=28 / 35$	M 1			
	$\mathrm{e}=0.8$	A 1	6	aef	
(ii)	$0.2 \times 28--0.2 \times 35$	M 1		must be double negative	
	$\mathrm{I}=12.6$	A 1	2		$\mathbf{8}$

Q3, (Jun 2005, Q4)

(i)	$5 \mathrm{~m}=\mathrm{mu}+4 \mathrm{~m}$	M1		cons. of mom.	
	$\mathrm{u}=1$	A 1			
	$\mathrm{e}=(2-1) / 5$	M1			
	$\mathrm{e}=0.2$	A 1	4		
(ii)	$\mathrm{I}=4 \mathrm{~m}$	B1			
		B1	2	to the right	
(iii)	$4 \mathrm{~m}=5 \mathrm{mv}$	M1			
	$\mathrm{v}=0.8$	A1			
	<1	B1	3		9

Q4, (Jun 2006, Q8)

(i)	$\begin{aligned} & 10=4+m \cdot x \\ & e=\ldots \text { or rationale for } x \\ & =2 \\ & m=3 \end{aligned}$	M1 M1 A1	3	conservation of momentum
(ii)	$\begin{aligned} & v=6 \\ & e=4 / 5 \text { or } 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	3	allow sign errors for M mark watch out for lost minuses
(iii)	$\begin{aligned} & 10-5=2 x+y \quad(5=-2 a \\ & +b) \\ & (-5=2 c+d) \\ & e=0.8=(y-x) / 10 \\ & y=x+8 \quad(a+b=8)(c \\ & -d=8) \quad(a=1) \quad(c=1) \\ & x=-1 \quad(b=7) \quad(d=-7) \\ & y=7 \quad(b) \\ & 1 / 2.2 .5^{2}+1 / 2.1 .5^{2}-1 / 2.2 .1^{2}- \\ & 1 / 2.1 .7^{2} \\ & 12 J \end{aligned}$	M1 A1 M1 A1 A1 A1 M1 A1		look for consistency or 1 in opp. direction to 1 st K.E. lost. Must be 4 parts (37.5-25.5)

Q5, (Jun 2009, Q6)

Q6, (Jan 2011, Q7)		
(i)	Last 5 marks	
OR		$b+a=1.8 \mathrm{e}$
		$0.7 \mathrm{~b}-0.2 \mathrm{a}=0.2 \times 1.8$
		$\mathrm{b}=0.4(1+e)$
		$\mathrm{a}=1.4 \mathrm{e}-0.4$
		$1.4 e-0.4>0.4+0.4 e$
		$e>0.8$
		Using a > b
		$a>0.72$
		$b>0.72$
		$1.8 \mathrm{e}>0.72+0.72$
OR	Last 5 marks	Using $\mathrm{a}=\mathrm{b}$ to find a or b
		$\mathrm{a}(\mathrm{or} \mathrm{~b})=0.9 \mathrm{e} \text { and } \mathrm{a}(\text { or } \mathrm{b})=0.72$
		Convincing argument for correct inequality $e>0.8$
OR	Last 5 marks	
		Using $a>b$
		$a>0.9 e$ or $b<0.9 e$

M1	Uses restitution
A1	$b-a=1.8 \mathrm{e}$
M1	Uses momentum
A1	$0.7 b+0.2 a=0.2 \times 1.8$, signs consistent with first eqn
M1	Solves 2 simultaneous equations (eliminate a or b)
A1	
A1	$a=0.4-1.4 e$
M1	Using $a>b$, correct signs in a essential
A1	
[9]	
M1	correct signs in a essential
A1	
A1	
M1	
A1	
M1	
A1	
A1	
M1	
A1	
M1	Solves 2 simultaneous equations (eliminate a or b)
A1	aef or multiples thereof
M1	correct signs in a essential
A1	aef or multiples thereof
A1	

,				
(i)		$\begin{aligned} & (2 m)(4)-(3 m)(2)=2 m v_{A}+3 m v_{B} \\ & \left(v_{B}-v_{A}\right) /(4--2)=0.4 \end{aligned}$ Speed $A=1.04 \mathrm{~m} \mathrm{~s}^{-1}$, Speed $B=1.36 \mathrm{~m} \mathrm{~s}^{-1}$	*M1 A1 *M1 A1 Dep**M1 A1 [6]	Attempt at use of conservation of momentum Attempt at use of coefficient of restitution Solving for v_{A} and v_{B} Final answers must be positive
(ii)		$\begin{aligned} & \text { Energy before }=1 / 2(2 m)\left(4^{2}\right)+1 / 2(3 m)\left(2^{2}\right) \\ & \text { Energy after }=1 / 2(2 m)\left(1.04^{2}\right)+1 / 2(3 m)\left(1.36^{2}\right) \\ & 22 m-3.856 m \\ & 18.1 \mathrm{~m} \end{aligned}$	B1ft B1ft M1 Al [4]	Energy before or Loss in A's KE Energy after or Loss in B 's KE Difference of total OR sum of differences (total kinetic energy must decrease) $18.144 m$ (Exact)
	OR	$\begin{aligned} & \frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(1-e^{2}\right) A^{2} \\ & \frac{1}{2} \frac{(2 m)(3 m)}{2 m+3 m}\left(1-0.4^{2}\right)(4+2)^{2} \\ & 18.1 m \end{aligned}$	$\begin{gathered} \text { *B1 } \\ \text { Dep*M1 } \\ \text { A1 } \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$	Loss of kinetic energy formula, where $A=$ approach speed Substitution of values into quoted formula $18.144 m$ (Exact)
(iii)		$\begin{aligned} & 2 m(4)-2 m(-1.04)=2.52 \\ & m=0.25 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \\ \text { A1 } \\ {[3]} \end{gathered}$	Attempt at change in momentum and equate to impulse. Must use 2 m or 3 m Or $3 m(2)-3 m(-1.36)=2.52$ Exact

ALevelMathsRevision.com

ALevelMathsRevision.com

Q10, (Jun 2015, Q5)

(i)	$\begin{aligned} & v^{2}=5^{2}+2 g(1.6) \\ & 0.7 \times 7.507 \ldots(=5.255 \ldots) \\ & (0.7 \times \operatorname{cv}(v))^{2}=2 g h \\ & h=1.41 \mathrm{~m} \end{aligned}$	B1 B1 M1 AI [4]	Complete method to find $v(=7.507 \ldots)$ $0.7 \times \mathrm{cv}(v)$, but not $\mathbf{c v}(\boldsymbol{v})=\mathbf{5}$; may be seen in (ii) Complete method to find h, with final speed 0 ; allow $\mathbf{c v}(\boldsymbol{v})=\mathbf{5}$ for method Exact 1.409
(ii)	$\begin{aligned} & 0.2(7.507 \ldots)(0.7)-(-0.2)(7.507 \ldots) \\ & \text { Impulse }=2.55 \mathrm{~N} \mathrm{~s} \text {, upwards } \end{aligned}$	$\begin{gathered} \mathrm{MI} \\ \mathrm{Alft} \\ \mathrm{Al} \\ {[3]} \end{gathered}$	Change in momentum found, with relevant velocities ie $\operatorname{cv}(v)$ and $0.7 \times \operatorname{cv}(v)$ but not $\operatorname{cv}(v)=5$ This may be negative; ft on their v found in (i) (2.5524...) Must have direction also.
(iii)	$\begin{aligned} & 0.2(9.8)(1.6)+1 / 2(0.2)\left(5^{2}\right)-0.2(9.8)(\mathrm{cv}(h)) \\ & \text { OR } \left.1 / 2(0.2)(7.507 \ldots)^{2}\right)-1 / 2(0.2)(0.7 \times 7.507 \ldots)^{2} \\ & \text { Loss of energy }=2.87 \mathrm{~J} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { Alft } \\ \text { Al } \\ {[3]} \end{gathered}$	Change in energy found, all energy terms needed and no extra terms This may be negative (2.87436 exact); art 2.87 ; allow - 2.87

ALevelMathsRevision.com

(i)	$\begin{aligned} & 4(8)+3(-10)=4 v_{A}+3 v_{B} \\ & \frac{1}{2}(4)(8)^{2}+\frac{1}{2}(3)(10)^{2}-\frac{1}{2}(4) v_{A}^{2}-\frac{1}{2}(3) v_{B}^{2}=121.5 \end{aligned}$ $v_{A}=-5.5\left(v_{A}=6.0714 \ldots\right)$ so speed of A is $5.5\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ $v_{B}=8 \quad\left(v_{B}=-7.428 \ldots\right)$ so speed of B is $8\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Both particles are moving in the reverse direction to their original motion	M1* A1 M1* A1 M1 dep* Al Al A1 [8]	Attempt at use of conservation of momentum Attempt at use of KE (before) $-\mathrm{KE}($ after $)=121.5$ Obtaining quadratic equation in either v_{A} or $v_{B}\left(7 v_{B}^{2}-4 v_{B}-416=0, \quad 28 v_{A}^{2}-16 v_{A}-935=0\right)$ and attempt to solve quadratic for either v_{A} or v_{B} cao; must be positive cao; must be positive Or an equivalent statement consistent with their v_{A} and v_{B}; left and right not sufficient without a diagram; moving away from each other needs a diagram also
(ii)	$\begin{aligned} & v_{A}-v_{B}=-e(8-(-10)) \\ & e=0.75 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Attempt at use of coefficient of restitution, right way round, v_{A} and v_{B} substituted

